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The exact form for the kinetic equation derived by Mori, Fujisaka, and 
Shigematsu (MFS) is used to obtain several approximations better suited 
to be compared with macroscopic transport equations. Three approxima- 
tions are discussed, namely, those known as the diagonal, the slow process, 
and the Markovian. The corresponding results are emphasized and their 
relationship is established. In particular, the Kramers-Moyal expansion for 
the Markovian kinetic equation is obtained from a microscopic basis. 
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1. I N T R O D U C T I O N  

In a previous paper <1> (hereafter referred to as I) we have discussed a unified 
method for deriving exact kinetic equations which govern the time evolution 
of the phase space functions describing the states of many-body systems. The 
relationship between the well-known methods of Zwanzig (2> and Mori et al. ~3~ 

was established as well as the equivalence among the many forms of the 
generalized projector operator which are of common use in the literature. 
In particular, the so-called Mori, Fujisaka, Shigematsu ~3~ (MFS) form is very 
useful because they have succeeded in expanding it in terms of a "slowness" 
parameter which leads to a Kramers-Moyal type of expansion for the exact 
kinetic equation. 
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The purpose of this work is to use the ideas behind the MFS approach 
to present a systematic derivation of the approximate kinetic equations, which 
are known to allow a comparison with macroscopic transport equations in 
many situations of physical interest. It is hoped this will lead to a clear 
understanding of the nature of the approximations themselves and of the 
corresponding equations. In our belief that this is a rather obscure point in 
the present stage of our understanding of such complex phenomena. 

In order to make this paper self-contained, a very brief resume of the 
main results obtained in I are given in Section 2. In Section 3 we derive 
Zwanzig's (2~ approximate kinetic equation for slow processes. Also, another 
approximate result, which is referred to as the "diagonal" form, is obtained. 
This form has been widely used in the study of the dynamics of nonlinear 
fluctuations (4,~ and is often confused with the former one. In Section 4 we 
show that under a Markovian assumption the MFS equation reduces to the 
Kramers-Moyal (KM) expansion for the kinetic equation with explicit, 
microscopic, expressions for the derivative moments. Furthermore, if one 
introduces the diagonal approximation, then the KM expansion becomes a 
Fokker-Planck type of equation, which may be cast into the nonlinear form 
used in the study of the renormalization of transport coefficients (6~ and to 
find the stationary states of a system not in equilibrium. (7~ We also want to 
point out there how this equation is related to the nonlinear Langevin 
equation proposed by Kawasaki (8~ for the mode-mode coupling theory. 
Finally, we show that if the "slow process" approximation is introduced in 
the KM expansion, one obtains the Fokker-Planck equation used by Green (9~ 
in his pioneering work on this subject. 

2. RESUME OF USEFUL RESULTS 

As we showed in I, if g(a, t) da is the probability that at time t, a~ 
&(r) < ak + da~ for all k, Ak(P) being the kth phase space function selected 
using the criteria discussed by Green (9~ and ak its numerical value, and if we 
choose the initial probability density p(P, 0) as 

o(r, 0) = W(F)~{A(F)} (1) 

where W(I) depends on the invariants of the system and ~{A(F)} is a function 
of the phase space functions, then 

dg(a, t)/dt = Z(a, t)g(a, t) (2) 

where Z(a, t) is Zwanzig's operator (ZO) given by 

Z(a, t)g(a, t) = f db if~(a, b)g(b, t) 

do J 
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If  the inner product of two phase space functions A and B is defined through 

(A, B) = f dF W(F)A(F)B*(F) (4) 
J 

then 

if2(a, b) = [G(b, 0)]-I(iFG(a, 0), G(b, 0)) (5) 

K(a, b, s) = [G(b, 0)1-~(F(a, s), F(b, 0)) (6) 

[G(b, 0)1 = f dF W(r)G(b, 0) (7) 

L is Liouville's operator and G(a, t) = r-lk 3(A~(F, t) - ak) = 3(A(F, t) - a), 
the hypercell in phase space at time t. Also, 

F(a, t) = e (1-va)~zt(1 - Po)iLG(a, 0) (8) 

Po being the projection operator defined as 

Pa = f db ( .... G(b, 0)) G(b, 0) (9) 
[G(h, 0)] 

The exact kinetic equation (2) may be expressed in different equivalent 
ways. The generalized Fokker-Planck form (GFP) is shown to be 

dg(a,t)d, _ ~ 0 ~  fo f = [vk(a)g(a, t)] + ds db ~ 

0 (10) • ~ [G(b, 0)]K~,(a, b, s) 0b,*Cq g(b,[G(b,t -0)]s) 

where 

vk(a) = (A~(F, 0); a) (11) 

Kk~(a, b, s) = (Xk(a, s)R,*(O); b) (12) 

( .... a) being the microcanonical average taken over the hypercell specified 
by A(F) = a, so that 

a) = [G(a, 0)]-1 f dF W(F)f(F) 3(A(F) - a) <f(r) ,  

= [G(a, 0) ] - l ( f ( r ) ,  G(a, 0)) (13) 

The phase space functions X~(a, t) and Rk(t) are defined by, 

Xk(a, t) = e '~- vo)iLt~R~(O)G(a, 0)} (14) 

Rk(t) = e(~-va)~Lt(1 -- Po)iLAk(O) (15) 

with R~(t) playing the role of a fluctuating force, as has been emphasized in 
Eq. (57) of I. 
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If  one writes Kkz(a, b, s) given by Eq. (12) so that the correlation of the 
fluctuating forces Rk(t) and R~(0) over the hypercell appears in an explicit 
way, namely 

Kk,(a, b, t) = Lkz(b, t) 8(a - b) + K~,(a, b, t) (16) 

where 

and 

Lkt(b, t) = (Rk(t)Rz*(O); b) (17) 

where 

K~o(a, r )  = V~o(a) ~(t') + C~o(a, t') 

Kko...~,(a, t') = G~o...~,(a , t') + Lko...k,_l.-k,(a, t') 

(24) 

(25) 

K~,(a, b, t) = (Y~(a, t)R,*(0); b) (18) 

and Yk(a, t) is defined by 

X~(a, t) = Rk(t)G(a, O) + Yk(a, t) (19) 

and now K~z(a, b, t) is expressed in terms of the correlation force, Eq. (15), 
then the MFS form of Eq. (2) is obtained, namely 

dg(a, t) ~ ~ ~ ~ 0 
d - - - T -  = - ~ [vk(a)g(a, t)] + ( -  1)~ ~ '  "'" ~ 8ako ~ak. 

r~ = 0 k 0 k n 

• ~ f f  dt' [G(a, 0)](S(ko ..... k,~; t')Rt*; a) 

& 

g(a, t - t') 
• ~a,* [6(a, o)] (20) 

where 

j?' S(ko,..., kn; t') = dtl ... dt, U(t' - tl)(1 - Po)A~I(O ) 

• ... U(t._~ - t.)(1 -Pa)dk.(O)R~o(t.) (21) 

with the U operator defined through 

U(t) = e(~-P~ )~Lt (22) 

Equation (20) may be alternatively written as 

dg(a' t) : ~ ~ " "  ~ ~ = o ko . . . .  ( a-~k~) 

f2 • dt" Kko...~,(a, t')g(a, t -- t') (23) 
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and 

r~o...~,:z(a, t') = (S(ko ..... k , ,  t')Rz*(0); a)  (26) 

G~0...k,(a, t') = [G(a, 0)] -1 ~ [G(a, 0)]Lk0...~,:~(a, t') (27) 

Equation (23) resembles the KM expansion for the kinetic equation in the 
Markovian approximation. In Section 3 this will be shown to hold true for 
the MFS equation under such an assumption, which suggests that Eq. (23) 
could be considered as the KM expansion for a non-Markovian process. 

3. D I A G O N A L  A N D  S L O W  PROCESSES A P P R O X I M A T I O N S  

The different forms for the kinetic equation (2) mentioned in the previous 
section are still exact. Also, they are too complicated in their structure to 
allow a comparison with macroscopic equations. In this section we shall 
discuss two approximate kinetic equations and their relationship as well. 

The diagonal approximation assumes that the leading term of the memory 
kernel Kkz(a, b, t) which appears in Eq. (10) and is defined in Eqs. (12) and 
(16) is given by Lkz(a, t), that is, by the correlation of the fluctuating force 
Rk(t) over the hypercell A(F) = a in phase space. Thus, 

K~(a, b, t) ~ Lkz(a, t) 3(a -- b) (28) 

implying that Kk~(a, b, t) is diagonal in a space. 
A justification for such an approximation may be found in the fact that 

the time evolution for the collective variables of the system is unaffected by 
Eq. (28), so that both the exact kinetic equation (2) and its diagonal approxi- 
mation give rise to the same nonlinear and non-Markovian Langevin 
equation for the collective variables (A~(F, t)}. In order to show this, we 
start from the exact time evolution equation for the hypercell G(a, t), which 
was shown in I to be 

dG(a, t)/dt = Z(a, t)G(a, t) + F(a, t) (29) 

The time evolution equation for (Ak(F, t)} is obtained from Eq. (29), 
integrating over da and using the identity 

to yield 

Ak(F, t) = f da akG(a, t) 

dAk(F,dt t) = f aeZ(a, t)a(a, t) da + R~(t) 

(30) 

(31) 
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Using Eqs. (2) and (10) to evaluate the integral on the rhs of Eq. (31), 
one arrives at 

= t ds db dA~(F, t) da v~(a)G(a, t) + 
dt ~'( b', 0)] 

x ~ [G(b, 0)] da Kkz(a, b, s) + Rk(t) (32) 

Using Eq. (18), one can show (see Appendix A) that 

f da K~z(a, b, = 0 (33) s) 

so that Eq. (32) is transformed into 

dAk(F' t) = f da v~(a)G(a' t) + ~ ds f db f [G(b' 

x ~ [G(b, 0)lL~z(b, s) G(b, t - s) + Rk(t) (34) 

which is an alternative form of Eq. (59) of I. It is now clear from Eq. (33) that 
the nonlinear, non-Markovian Langevin equation for the collective variables 
{A~(F)} corresponding to the exact kinetic equation (2) is invariant under the 
diagonal approximation, where K~(a,b, t ) =  0. Thus, the assumption 
expressed by Eq. (28) may be justified by the fact that it leads to an equation 
for the (4~(F)) that is identical to Eq. (34). However, it is important to 
underline the fact that the diagonal approximation differs from the exact 
kinetic equation, since it predicts different time evolution equations for the 
higher moments of the A~s. 

The diagonal approximation was introduced by Mori and Fujisaka (~) 
and by Garcia-Colin and Velasco (5) in a way that is different from the one 
presented above. This equation will be referred to as the Mori-Garcia-Colin 
equation (MGC) and is readily found if Eq. (28) is used in Eq. (10), namely, 

dg(a, t) _ ~  O O f" ~ 

O g(a,  t - s )  (35) x Lkz(a, s) 8al* [G(a, 0)] 

It may be obtained in an alternative fashion from the MFS equation (20), 
neglecting all the terms in the series for n >i 1. This is equivalent to ignoring 
the nondiagonal contributions of K~,(a, b, s). 

Another approximate kinetic equation is found in those cases where the 
time rate of change of the phase space functions is controlled by a "slowness" 
parameter 8, (~) which implies that Ak ~ & When 8 << 1 the relevant or 
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dominant terms in the resulting equation are those that are of order 3 and 32 
and characterize the slow behavior. This is, however, possible, provided that 
the A~ and the slowness parameter have been chosen in an appropriate 
manner so that the power series expansion in the latter is valid. Equation (20) 
is very well suited for deriving the kinetic equation for slow processes, since 
it contains the different terms to all orders in 3. Let us now study this equation 
in terms of 3, by noticing that since Ak(P, 0) ~ 3, Eqs. (11) and (15) imply that 

vk(a) ~ 3, R~(0) ~ 3 (36) 

When (iLPa)" is applied to a phase function I(F) that changes as 3 r, then 
(see Appendix A) 

[ i L P G ] n I ( r )  ~, 3 n+r (37) 

Using Eq. (37), it follows easily that U(t)(1 - Pa)I(F) has at least terms of 
order 3 r, 

U(t)(1 - Pa)I(F) = (1 - Pa)e 'm-%)tI(F)  ~ 3 r (38) 

and also, by Eq. (15), 

Rk(t) ~ $ (39) 

Use of Eq. (39) in Eq. (21) leads also to the result that 

S(ko ..... k , ,  t') ~ 3 "+1 (40) 

whence 

(S(ko, . . . ,  k , ,  t')R,*(0); a) ~ 3 "+2 (41) 

From Eqs. (36) and (41) it follows readily that the first term in Eq. (20) 
is linear in 3, whereas the nth term has terms of order 3" + 2 and higher powers 
in 3. This implies that the MFS equation is not a systematic power series 
expansion in terms of the slowness parameter 3. However, if 3 < 1, we can 
obtain the kinetic equation for slow processes by neglecting all terms of 
order 33 and higher, recovering Zwanzig's approximate equation. (2) Indeed, 
we may proceed in two steps, setting first n = 0. This leads to the MGC 
equation (35). In this equation the term Lkz(a, s) defined by Eq. (17) still has 
contributions of order higher than 32 . To extract from it the linear and 
quadratic contributions in this parameter, we use Eq. (36) and notice also 
from Eq. (15) that any term in the expansion of the exponential operator 
containing at least one fact iLPa is, according to (37), of order 32; hence 

R,Xs) = (1 - P o ) A ( r ,  s) + 0(35) (42) 

using the fact that A~(r', s) = e~L"Ak(V, 0). Letting Pa act on the phase 
function, one obtains that 

A~(F, s) - f db (A(r, s); b)a(b, 0) + 0(32) (43) Rk(s) 
J 
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Thus, the 32 effect in L~z(a, s) is obtained through the identity (A9), to 
yield 

<n~(s)R~*(0); a> 
= <[Ak(F, s) - v~(a)][A~(F, 0) - v,(a)]*; a) + 0(33) (44) 

where use has been made of the fact that (G(b, 0)Az*(0); a) = v~*(a) 3(a - b), 
so that to order 32 the correlation of the fluctuating forces is equal to the 
correlation of the velocities in the hypercell. If this term is denoted by 
L~)(a, t), we can finally write, substituting Eq. (44) back into Eq. (35), that 

dg(a,dt t) _ _~ ~ak vk(a)g(a ' t) + ~ ~ f~ ds [G(a, 0)]L~)(a, s) 

g(a, t - s) (45) 
x ~az* [G(a, 0)] 

which is just Eq. (33) in Ref. 2. 
In spite of the formal similarity between Eqs. (35) and (45), which has 

occasionally led to an identification of the slow process and the diagonal 
approximations, they are different kinetic equations. As indicated above, 
Eq. (45) has an additional restriction over Eq. (35), namely that the correla- 
tion of the fluctuating forces is replaced by the correlation of the velocities 
on the hypercell, which is a 82 effect. 

4. M A R K O V I A N  K I N E T I C  E Q U A T I O N S  

The main purpose of this section is to show how the MFS result, Eq. (20), 
behaves under a Markovian assumption. The KM expansion for the kinetic 
equation is obtained, which under further approximations, namely the 
diagonal one, leads to the nonlinear Fokker-Planck equation used by Zwanzig 
and Kawasaki in their study of the renormalization of transport coefficients 
and in the mode-mode coupling theory. Also, the KM expansion together 
with the slow process approximation reduces to the Fokker-Planck equation 
used by Green in his general theory of irreversible processes. 

The usual way of introducing the Markovian approximation within a 
microscopic context is to assume that the times over which the phase space 
functions Ak(F) change appreciably are much longer than the correlation 
time of the kernel K(a, b, t). Thus one writes that 

K(a, b, t) = 2K(a, b) 3(t) (46) 

where 

f0 ~176 K(a, b) = K(a, b, t) dt (47) 
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Introducing Eq. (46) into Eq. (2) and using the convention thatfo dt 8(0 = �89 
yields 

dg(a, t)/dt = M(a)g(a, t) (48) 

where the time-independent operator M(a) is given by 

t) = f db [if~(a, b) - K(a, b)]g(b, t) (49) M(a) g(a, 

Introduce now A(a), the adjoint operator of M(a), through the following 
equality: 

f f(a)M(a)h(a) da = f h(a)A(a)f(a) da (50) 

where f(a) and h(a) are arbitrary functions of the variables {ae}. 
Upon substitution of K(a, b, t) in Eq. (20) by its approximate value 

given by Eqs. (46) and (47) and using Eqs. (76), (92), and (68) of I, one can 
show that the kinetic equation is transformed into 

dg(a, t) ~ 0 ~. 
dt = - ~ [v~(a)g(a, t)] + ( -  1) ~ ~ ... 

n = 0 k 0 Ir n 

0 g(a, t) (51) 0 0 [G(a, O)]Lko...~:~(a) Oa,* [G(a, 0)] 

where 

L~o...~,:,(a) = ( R , * ( O ) S ( k o  ... k , ,  t); a) a t  (52) 

Notice should be made of the fact that Eq. (51) also can be obtained 
from Eq. (20) if the Markovian approximation is used in the form 
L~o...~,:,(a, t) = 2L~o...~,:,(a) 8(0.  

Also, it is easy to show that A(a) is obtained via Eqs. (51) and (50) with 
the following result: 

o o 
A(a)f(a) = ~ "'" ~ Kko...k.(a) 0azo c~a~ f(a) (53) 

n = 0  /r k n  

where 

and 

K~o(a) = V~o(a) + C~o(a) 

K~o...~,,(a) = L~o...~,_l:_~n(a) + C~o...~n(a) 

C~o...~(a) = [G(a, 0)1-1 ~ a , ~ [a(a, 0)]z~o...~:,(a) 

(54) 

(55) 

(56) 
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Using Eqs. (48), (50), and (53), one can show after some elementary 
straightforward algebra that the kinetic equation (51) may be rewritten in the 
following way: 

dt = ~ ... ~ . . . . .  K~o...k~(a)g(a, t) (57) 
n = 0  k 0 k n 

Equation (57) plays an essential role in our analysis in view of its 
similarity with the KM expansion of the master equation. In the theory of 
stochastic processes it is shown that, starting from the master equation 
defining a Markov process, the time evolution for the probability density 
g(a, t) may be expressed in its KM form, (1~ namely 

2 dg(a, t) = 1 -~---~o "'" ~o...~,(a)g(a, t) dt (n + 1)! ~ "'" ~'  ca - 8--~k. 
n = 0 /r kn 

(58) 
where ~ko...k,(a) is the n + 1 moment of the transition probability per unit 
time or derivative moment, defined by 

~ko...~,(a) = lira 1 t' (bk0 - a~o) "'" (bz, - ak,)P(b, ~]a) da (59) 
~--*0 " T J  

P(b, rla ) being the conditional probability that at time �9 the stochastic 
variable takes the value b, given its value a at time t = 0. 

Due to the structure of the kinetic equation (57), Mori et al. <s) identify it 
with the KM expansion by simply setting 

~0...~(a) = (n + 1)! Kko...g,(a) (60) 

However, this is not quite convincing, because ultimately this relation- 
ship ought to be derived from Eq. (59), Indeed, one can establish this rela- 
tionship starting directly from the kinetic equation that is satisfied by the 
conditional probability P(b, ~'la). Recalling that this quantity P(b, rla) 
satisfies Eq. (2) [see (37) of I] 

dP(b, t[a)/dt = Z(b, t)e(b,  t la) (61) 

which, after introduction of Eq. (46), is transformed into 

dP(b, t[a)/dt = M(b)P(b, t la) (62) 

whose formal solution is 

P(b, t]a) = (exp[M(b)t]}e(b, 0[a) = {exp[M(b)t]} 8(a - b) (63) 

Substitution of Eq. (63) into Eq. (59) and use of Eq. (50) leads to the 
result 

~ko...k,(a) = lim 7 db ~(b - a) exp[A(b)r] ~-~ (bkr -- a~,) (64) 
~'~0 ~=0 
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which after expansion of the exponential reads 

n 

N~...~,(a) = lira _1 ( f db ~(b - a) l -~  (b~ - ak,) 
~ o  ~ ' ( d  r=O 

+ ~" f db 3(b -- a)A(b) I ~  (bk, -- ak,) + O(~-2)'~ (65) 
d r = 0  ) 

Since the first term is zero upon integration and all except the second 
one are zero .when the time limit is taken, we are left with 

f = d b  - a ) A ( b ) I - - I  - ( 6 6 )  
r = O  

Using Eq. (53) for A(b) and carrying out the integrations [see Eq. (B14)], 
one arrives at the following result: 

~o...~.(a) = ~ K~o...~~ ) (67) 
n + 1P~1-1-1 

where the notation beneath the sum indicates a summation over the permuta- 
tions of the n + 1 elements ko ..... k,  taken n + 1 times. Equation (67) differs 
from Mori's proposal in the fact that the moment derivatives are in this case 
conveniently symmetrized. For example, the third derivative moment is 

K~o~l~2(a ) = K~o~l~2(a ) + Kkok2~l(a) + K~lko~2(a) 

+ K~lk~o(a) + K~2k~o(a) + X~2~o~(a ) (68) 

and not just 6K~okzk~(a). Our result is in agreement with Green's in the case 
of a slow Markovian process, as we shall see later. 

Regardless of this fine point, Eq. (57) may in fact be interpreted as the 
KM expansion of a Markovian process/a) Indeed, noticing that ko ..... k,  are 
dummy variables, the derivatives with respect to the ak commute and the 
following identity holds true: 

( ) ( 0 )  
O - ~---~k, K~o...~,(a)g(a, t) (69) = (n + 1 ) ! ~ - . . ~  -~-~ko "'" 

When Eq. (69) is substituted back into Eq. (58), we recover precisely Eq. (57). 
I f  we further regard the Markovian process as a continuous one, m) then 

by definition 

Nko...~,(a) = 0, n /> 2 (70) 
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Under this condition the KM expansion of the kinetic equation reduces 
to its first two terms. Using Eq. (57), one can easily see that for this case 

dg(~ t t) _ ~ ~ K~(a)g(a, t) 

8 
+ ~ko ~ 8ako ~ael Kk~ t) (71) 

which is the well-known Fokker-Planck equation. Notice should be made, 
however, that in this equation the quantities Kk and K~o,~ 1 may be in principle 
calculated from microscopic quantities through Eqs. (56), (55), (52), and (21). 

As we mentioned in the previous section, the diagonal approximation 
consists in neglecting all terms for n >1 1 in the MFS equation. If we introduce 
this approximation in Eq. (51), we get that 

dt - - ~ [v~(a)g(a, t)] + ~ [G(a, 0)] 

8 g(a, t) 
x Lko:~(a) Ca,* [G(a, 0)l (72) 

which is the kinetic equation for diagonal Markovian processes. Making use 
of Eqs. (54) and (56), it may be rewritten as follows: 

dg(a, t) ~ 8 
dt - - ~ Ku(a)g(a, t) 

+ ~o ~ 8aeo O Lko:-k~(a)g(a, t) (73) 

Comparison of Eqs. (71) and (73) shows that a diagonal Markovian 
process is a particular case of a continuous process where the additional 
assumption is made that 

Kkok~(a) = Lko:-kx(a) (74) 

Also, as is shown in Appendix B, the stationary solution gC*)(a) for both 
cases, namely, Eqs. (57) and (73), is given by 

g(')(a) = [6(a ,  0)1 (75) 

Equation (73) may be now used to derive the Zwanzig-Kawasaki 
equation under the following three assumptions: (i) W(P) in Eq. (1) is sub- 
stituted by an equilibrium distribution function W(P)=  pea(F). (ii) The 
distribution function of the coarse-grained variables {a} is a Gaussian. 
(iii) Lk0:-k~(a) may be replaced by its average value. 
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The first assumption implies that, by Eq. (7), 

[G(a, 0)] = ~ d r  poq(r)G(a, 0) (76) 

or that the stationary solution to Eq. (73) is the equilibrium distribution 
function for the coarse-grained variables. Hence the equilibrium average of 
any function f(a) is given by 

( ( f (a)) )  = f da f(a)geq(a) (77) 

and furthermore, if f (a) = ( f ( r ) ;  a), its average over the hypercell, then 

f da geq(a)(f(P); a) = f dl ~ pedr) f (P)  = (f(r))o~ (78) ((f(a)))  

where use has been made of Eq. (13). 
The equilibrium averages of vk(a) and Lko._~=(a) may be readily found 

using Eqs. (11), (52), and (78). In fact, 

( ( v ~ ( a ) ) )  = (A~(r, o ) ) o .  = o (79) 

jo ((Lko;_~l(a))) = (R~o(t)R~(O))o q dt (80) 

The second assumption simply states that 

geq(a) = C exp~(-~a~a~*'~ (81) 
t - -  ) k 

which may be achieved by an adequate selection of the variables Ak. C~ The 
third assumption (iii) postulates that if 

L~o;-~.(a) - (<Lko:-kl(a))) = Lko:-kz (82) 

then by Eqs. (56) and (81) 

C~(a) = -~/~k,,a, (83) 
l 

Substitution of Eqs. (54), (82), and (83) into Eq. (73) leads to the result that 

dg(a, t) x~ e 
dt = -  ~' -~a~[ Vk(a) - ~ L~:'a'] g(a' 

+ ~ L~o.-~, ~ ko,kz ' 8ako ~akz g(a, t) (84) 

which is the Fokker-Planck equation used by Zwanzig ~16~ and Kawasaki. C7~ 
The nonlinearity in this equation arises from the term v~(a). Ca~ 
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It is at this stage interesting to point out that the time evolution equation 
for the collective variables in the Markovian approximation is found to be 
(see Appendix B) 

= f da Kk(a)G(a, t) + R~(t) (85) dAk(F, t)/dt 

where Kk(a) and R~(t) are given in Eqs. (54) and (15), respectively. As pointed 
out before, this result is invariant under the diagonal approximation and it 
may be further simplified if Eqs. (82), (80), and (83) are used, leading to 

dA~(r, t)/dt = vk({a(t))) + [G(a(t))]~ ~ ~ [G((a(t)}]~q/~, + Rk(t) 

(86) 

In this equation, the fluctuating force R~(t) and the bare transport coefficients 
are related through Eq. (17). In fact, if the correlation time for the hypercell 
average of Rk(t) is much smaller than the time interval in which an appreciable 
change in Ak(F, t) takes place~ then it is valid to introduce the approximation 
that (R~(t)R~*(O); a ) _  2Lk;z(a)3(t). Hence the bare transport coefficients 
and the fluctuating force are related through the fluctuation-dissipation 
theorem, namely 

(R~(t)Rz*(O))oq = 2L~:~ ~(t) (87) 

as follows from Eq. (78). Also, (Rk(t))~q = 0, which follows from the fact 
that (Rk(t); a) = 0. Equation (86) was first proposed by Kawasaki (a) in his 
mode-mode coupling theory and derived from first principles by Mori and 
Fujisaka (4) and Garcia-Colin and Velasco. (5) 

The kinetic equation for a slow Markovian process is easily obtained 
from Eq. (73) ignoring all terms of order 83 and higher. Thus, 

dg(a, t) ~ s 
dt - - [vk(a)g(a, t)] 

where 

0 ~L(2) rox 8 g(a,t) 
+ k~o ~ ko:,~"J 8a,* [G(a, 0)] (88) 

K~'(a) = v~(a) + [G(a, 0)]-1 ~ [C(a, 0)]LL~)(a) (89) 

( 2 )  __ f ( 2 )  K~o.~l(a) - -~o;-u~(a) (90) 

Comparing Eqs. (88) and (71) and using Eq. (67), we obtain the deriva- 
tive moments for a slow process, namely 

~o(a) = K~2o)(a) (91) 

Kko.kl(a) = L~._kz(a) + L~:_ko(a) (92) 
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Equation (89) with the explicit forms given by Eqs. (91) and (92) for the 
first derivative moments was first derived by Green (9) in 1952. 

5.  C O N C L U D I N G  R E M A R K S  

Using the MFS form for the exact kinetic equation of a many-body 
system, one is able to find in a systematic way the several approximate 
equations that, in many instances, have been used in the literature. Although 
the nature of the approximations themselves have been stressed throughout 
the paper, it is important to mention that applications to concrete problems 
are small in number. In particular, explicit calculations of transport coeffi- 
cients using these types of techniques have only been suggested, but numerical 
results are scarce, being difficult to accomplish. (12) We hope to deal explicitly 
with this question in a future publication, 

It is also pertinent to comment here about the slowness parameter 8, 
which was introduced in Section 3 to derive one class of approximate kinetic 
equations. This parameter is, for instance, equal to q0~:, where qo is the maxi- 
mum wave number and ~ the correlation length of density fluctuations in 
dense fluids when the set {A} are the hydrodynamic variables. For the case of a 
Brownian particle of mass M suspended in a fluid where particles have a mass 
m, then 8 is (m/M) lt2 and so on. The nature of this parameter is thus inherent 
to the choice of the phase space function and under these circumstances will 
yield meaningful equations for slow processes. Once a kinetic equation is 
obtained and explicit expressions for the transport coefficients are given, say 

SLOW PROCESS 

~ . J U q P t O X .  MORI~ FUJISAKA AND ~) 
9IIIGENIIT~J'$ 
F.xPAN$1ON 

I ei,(2o) I ~ I 

/ / I. j i l f i i t l :  L(2)jttla,r) I 
/ / | 

KRA~ERS - MOYAL 
I MOR,-. ,C,,- I  .'L I ZwA/Z'6'S -~ 

EXPAN.~ION j I COLIN K|IIETIC ~'--~----~APPROXWATEKJRET#~ 

DIAGONAL I O M ~ I  

" , , , . , , . - I  = . G o . , <  r 
I kl $ GREEN 

E~U'T'O'EQ(")I T I~""CEO'IOR I T l E~ I 
! ' I E0.(73) I ' L / 

LjI((o): ~|1 I l l)  Li#((o): Llle)ji(0) 

Fig. 1. Diagram i l lustrating the several results obtained from the MFS form of the 
kinetic equation. The relationship among these results is also exhibited. 
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as time correlation functions of the appropriate currents, their evaluation as 
power series in the density n is well known to present difficulties because of 
the so-called long-time tails, which give rise to terms like n 2 log n, and in two 
dimensions these results even bring into question the validity of hydrody- 
namics. This is not the place to enter into a detailed discussion of such 
problems, but a word of caution must be advanced in connection with the 
use of these expansions, as well as with regard to the differences among them. 

Finally, we condense all the different schemes used in this work, as well 
as the relationship among them, and the various results that they lead to in 
the diagram shown in Fig. 1. 

A P P E N D I X  A. PROOF OF EQS. (33)  A N D  (37) 

Equation (33) is obtained as follows. Using Eq. (18), defining K~(a, b, t), 
we see that 

f da Kg,(a, b, t) = ( ( f  da Yk(a, t)}R,*(O); b~ (A1) 

From Eq. (19), one has that 

f da Y~(a, t ) =  f da Xk(a, t ) -  f da G(a, O)R~(t) (A2) 

But the first term is, according to Eq. (14), equal to Rk(t) and G(a, 0) is 
normalized to unity in a space so that 

f da r~(a, = 0 t) (A3) 

When Eq. (A3) is substituted back into Eq. (A1), it yields Eq. (33) of the 
text. 

The proof of Eq. (37) starts by looking at the effect of applying the 
operator [iLPo] ~ to an arbitrary phase space function I(F). From Eqs. (9) 
and (13), 

[iLPa]'~I(F) = [iLea]'~ f dbl (I(F), bl)iLG(b~, O) 

= abl ... <1(r); bi>i  i, O) 
Q/ 

(A4) 

by successive applications of iLPa, n - 1 times to iLG(bl, 0). The order in 8 
of the different terms appearing in Eq. (A4) is now easy to find. From the 
identity 

iLG(b, O) = - ~  OG(b,ob~ 0) A~(0) (A5) 
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iLG(b, 0) ~, a, so that from Eq. (5) we see that iC2(b~,bj) ,-~ 8, which in turn 
implies that i f I (F)  ,-~ g ~, its average value over the hypercell A(F) = b will be 
,-, 3 r. These results used in Eq. (A4) show that 

[iLPo]"I(E) ~ 3 "+~ (A6) 

which is Eq. (37) of the text. 
Finally, to show the result used in the derivation of Eq. (44), we start with 

(Rk(t')Rff(O); a> = (Rk(t')Rz*(O); G(a, 0)) = (R~(t'), Rt(0)G(a, 0)) 
, [G(a, 0)] [G(a, 0)] 
; (A7) 

where the second equality follows from the definition of inner product. Using 
the definition of Rz(0) given in Eq. (15) and the identity Pa(f(F)G(a, 0)} = 
{Pof(F)}G(a, 0), one readily finds that 

Rt(0)O(a, 0) = (1 - Pa)[.4,(0)G(a, 0)1 (AS) 

When Eq. (A8) is substituted back into Eq. (A7), it gives that 

<Re(t')Rff(O); a) = (Re(t').4,*(O); a) (A9) 

where use has been made of the fact that (1 - Pa) is Hermitian and that 
acting on R~(t') leaves it unchanged. 

A P P E N D I X  B 

To obtain Eq. (67), one starts with Eq. (53) applied to a convenient 
function, namely 

A(b) ~ (b~, - a j  = ~ " "  E Kzo'"'~ (b) c3b, ~ a 
r=O q=0  l 0 lq q - -  

(BI) 
Since 

0 " 
~b,o~=o (bk,- ak,)= ~ 3zo,k,oI-- I (b~,- a~,) 

= ~ 0 = 0  r ~  0 

one sees immediately that 

O O~ ~_o(b~ _ak,) Obz~ Zo - 

~0 = 0  g z ~ O  ~q~CtO, . . . ,Ctq-1  r~CtO'"Ctq 
(B2) 

when q ~ n and the lhs is equal to zero if q > n. Since all the summations 
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over %, ~, . . . ,  % are equal to the sum over all permutations of the n + 1 
elements ko -.- k, taken in groups of q + 1, we have that 

--~---~ ... ~ ~oo(b~ - a ~ , ) =  ab~ 8 zo 

Substituting Eq. (I]3) into 
summation gives that 

A(b) I - I  (b~, - a~,) = 

.+lv,.~ "*'~o'"'~ (B3) 

Eq. (B1) and carrying over the lo,..., l~ 

K~o...,,(b) ~ (b~ , -  a~,) (B4) 
r = 0  q = O  ~ + l P q + l  ~" r g O " ' 6 q  

When Eq, (B4) is put back into Eq. (66), then due to the 3(a - b) in the 
integral, only the term q = n survives and Eq. (67) is immediately obtained. 

Let us show next that the stationary solution to Eqs. (57) and (73) is just 
[G(a, 0)]. Introducing Eqs. (54) and (55) into Eq. (57) yields 

dg(a,t) g(:~ot) {Vko(a) 
~, = - y  ~ + C~o(a)~ + .=1 Y~o ' ~. 

X . . . . .  

(B5) 

From Eq. (56), on the other hand, it is readily seen that 

k,+~ ... ea~+ 1 L~o...z,:_k,+~(a)[a(a, 0)1 (B6) 

so that for g(a, t) = [G(a, 0)] the term containing C~o(a) in the first summa- 
tion and all the series of the second term cancel out among themselves. Also, 
the first term is zero because, according to Eq. (11), 

- ~  ~ ~(,)I~(~, 0)1 = - ~  ~ ~(~)~(0)~(,, 0) 

= f dr [iLW(r)lG(a, 0) = 0 (B7) 

after the identity given by Eq. (A5) and the fact that L is Hermitian are used. 
The equality follows because the metric W(F) is stationary. Equations (B6) 
and (B7) lead directly to the result that [G(a, 0)] is the stationary solution to 
Eq. (57). 
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Noticing that if one cuts the K M  expansion for n = m and introduces the 
approximation 

K~o...~=(a) = L~o...~,_i:_~,(a ) (B8) 

Equation (B6) keeps holding true; thus [G(a, 0)] is the stationary solution 
to the truncated equation (75). 

Finally, to find the time evolution equation for the collective variables 
in the Markovian approximation, one substitutes the definition of C~(a, s) 
given by Eq. (27) into Eq. (34) to obtain that 

dA~(C, t ) /dt  = f da v~(a)G(a, t)  

fo'dSf daC (a,s)G(a,t s) + R~(t) (B9) 4- 

From Eq. (27) and the Markovian approximation one gets that 

Ck(a, s) = 2Ck(a) 8(s) (B10) 

Substituting Eq. (B 10) back into Eq. (B9), carrying over the time integral 
and introducing Eq. (54) leads us directly to Eq. (85). 
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